
1 / 75

In this module
Advanced Rust syntax

2 / 75

In this module

Structured data, enums, matching

Error handling

Memory management, references, slices

3 / 75

Ownership

In Rust there is always a single owner for each stack value

Once the owner goes out of scope any associated values should be cleaned up

Copy types creates copies, all other types are moved

We previously talked about ownership

4 / 75

Moving out of a function

main loses ownership of s1 : it is moved into calculate_length

We can use Clone to create an explicit copy

We can give ownership back by returning the value

What about other options?

We have previously seen this example

1 fn main() {
2 let s1 = String::from("hello");
3 let len = calculate_length(s1);
4 println!("The length of '{s1}' is {len}.");
5 }
6
7 fn calculate_length(s: String) -> usize {
8 s.len()
9 }

` ` ` ` ` `

` `

5 / 75

Borrowing

If a value is borrowed, it is not moved and the ownership stays with the original owner

To borrow in Rust, we create a reference

To temporary hold a value, but "give back" the borrow.

1 fn main() {
2 let x = String::from("hello");
3 let len = calculate_length(&x);
4 println!("{x}: {len}");
5 }
6
7 fn calculate_length(arg: &String) -> usize {
8 arg.len()
9 }

6 / 75

References (immutable)
References are either immutable (default) or mutable.

1 fn main() {
2 let s = String::from("hello");
3 change(&s);
4 println!("{s}");
5 }
6
7 fn change(some_string: &String) {
8 some_string.push_str(", world");
9 }

1 Compiling playground v0.0.1 (/playground)
2 error[E0596]: cannot borrow `*some_string` as mutable, as it is behind a `&` reference
3 --> src/main.rs:8:5
4 |
5 7 | fn change(some_string: &String) {
6 | ------- help: consider changing this to be a mutable reference: `&mut String`
7 8 | some_string.push_str(", world");
8 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ `some_string` is a `&` reference, so the data it refers to cannot be

borrowed as mutable
9
10 For more information about this error, try `rustc --explain E0596`.
11 error: could not compile `playground` due to previous error

7 / 75

References (mutable)

A mutable reference can even fully replace the original value

To do this, you can use the dereference operator (*) to modify the value:

References are either immutable (default) or mutable.

1 fn main() {
2 let mut s = String::from("hello");
3 change(&mut s);
4 println!("{s}");
5 }
6
7 fn change(some_string: &mut String) {
8 some_string.push_str(", world");
9 }

1 Compiling playground v0.0.1 (/playground)
2 Finished dev [unoptimized + debuginfo] target(s) in 2.55s
3 Running `target/debug/playground`
4 hello, world

` `

1 *some_string = String::from("Goodbye");

8 / 75

Rules for borrowing and references

One mutable reference at the same time

Any number of immutable references at the same time as long as there is no mutable reference

References cannot live longer than their owners

A reference will always point to a valid value

These rules are enforced by the Rust compiler.

These rules are enforced by the Rust compiler.

9 / 75

Borrowing and memory safety

Rust is memory safe without runtime overhead like a garbage collector

Rust performs like a language with manual memory management

The borrowing rules and ownership model make Rust safe.

10 / 75

Reference example

1 fn main() {
2 let mut s = String::from("hello");
3 let s1 = &s;
4 let s2 = &s;
5 let s3 = &mut s;
6 println!("{s1} - {s2} - {s3}");
7 }

1 Compiling playground v0.0.1 (/playground)
2 error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
3 --> src/main.rs:5:14
4 |
5 3 | let s1 = &s;
6 | -- immutable borrow occurs here
7 4 | let s2 = &s;
8 5 | let s3 = &mut s;
9 | ^^^^^^ mutable borrow occurs here
10 6 | println!("{s1} - {s2} - {s3}");
11 | -- immutable borrow later used here
12
13 For more information about this error, try `rustc --explain E0502`.
14 error: could not compile `playground` due to previous error

11 / 75

Returning references
You can return references, but the value borrowed from must exist at least as long

1 fn give_me_a_ref() -> &String {
2 let s = String::from("Hello, world!");
3 &s
4 }

1 Compiling playground v0.0.1 (/playground)
2 error[E0106]: missing lifetime specifier
3 --> src/lib.rs:1:23
4 |
5 1 | fn give_me_a_ref() -> &String {
6 | ^ expected named lifetime parameter
7 |
8 = help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
9 help: consider using the `'static` lifetime
10 |
11 1 | fn give_me_a_ref() -> &'static String {
12 | ~~~~~~~~
13
14 For more information about this error, try `rustc --explain E0106`.
15 error: could not compile `playground` due to previous error

12 / 75

Returning references
You can return references, but the value borrowed from must exist at least as long

1 fn give_me_a_ref(input: &(String, i32)) -> &String {
2 &input.0
3 }

1 fn give_me_a_value() -> String {
2 let s = String::from("Hello, world!");
3 s
4 }

13 / 75

Structured data types

14 / 75

Types redux

Primitives (integers, �oats, booleans, characters)

Compounds (tuples, arrays)

Most types were Copy

Borrowing becomes more interesting with more complex data types

We have seen some basic types

` `

15 / 75

Structuring data

structs

enums

unions

Rust has two important ways to structure data

16 / 75

Structs

This is an example of a tuple struct. You can access the �elds in the struct the same way as with tuples:

A struct is similar to a tuple, but this time the combined type gets its own name

1 struct ControlPoint(f64, f64, bool);

1 fn main() {
2 let cp = ControlPoint(10.5, 12.3, true);
3 println!("{}", cp.0); // prints 10.5
4 }

17 / 75

Structs

We can add a little more purpose to each �eld

No need to keep our indexing up to date when we add or remove a �eld

Much more common though are structs with named �elds

1 struct ControlPoint {
2 x: f64,
3 y: f64,
4 enabled: bool,
5 }

1 fn main() {
2 let cp = ControlPoint {
3 x: 10.5,
4 y: 12.3,
5 enabled: true,
6 };
7 println!("{}", cp.x); // prints 10.5
8 }

18 / 75

Enumerations

An enumeration (listing) of different variants

Each variant is an alternative value of the enum, you pick a single variant to create an instance

One of the more powerful kinds of types in Rust are enumerations

1 enum IpAddressType {
2 Ipv4,
3 Ipv6,
4 }

1 fn main() {
2 let ip_type = IpAddressType::Ipv4;
3 }

19 / 75

Enumerations

This way, the associated data and the variant are bound together

Impossible to create an IPv6 address while only giving a 32-bit integer

Note: an enum always is as large as the largest variant

u16

u8Ipv4(u8,u8,u8,u8)

Ipv6(u16,u16,u16,u16,u16,u16,u16,u16)

u8 u8 unused

u16

u8

u16 u16 u16 u16 u16 u16

Enums get more powerful, because each variant can have associated data with it

1 enum IpAddress {
2 Ipv4(u8, u8, u8, u8),
3 Ipv6(u16, u16, u16, u16, u16, u16, u16, u16),
4 }

1 fn main() {
2 let ipv4_home = IpAddress::Ipv4(127, 0, 0, 1);
3 let ipv6_home = IpAddress::Ipv6(0, 0, 0, 0, 0, 0, 0, 1);
4 }

20 / 75

Pattern matching

a and b introduce local variables within the body of the if that contain the values of those �elds

The underscore (_) can be used to accept any value

To extract data from enums we can use pattern matching using the if let [pattern] = [value]
statement

` `

1 fn accept_ipv4(ip: IpAddress) {
2 if let IpAddress::Ipv4(a, b, _, _) = ip {
3 println!("Accepted, first octet is {a} and second is {b}");
4 }
5 }

` ` ` `

` `

21 / 75

Match

Every part of the match is called an arm

A match is exhaustive, which means that all variants must be handled by one of the match arms

You can use a catch-all _ arm to catch any remaining cases if there are any left

Pattern matching is very powerful if combined with the match statement

fn accept_home(ip: IpAddress) {
 match ip {
 IpAddress::Ipv4(127, 0, 0, 1) => {
 println!("You are home!");
 },
 IpAddress::Ipv6(0, 0, 0, 0, 0, 0, 0, 1) => {
 println!("You are in your new home!");
 },
 _ => {
 println!("You are not home");
 },
 }
}

` `

22 / 75

Match as an expression

The match arms can return a value, but their types have to match

Note how here we do not need a catch all _ arm because all cases have already been handled by the two

arms

The match statement can even be used as an expression

1 fn get_first_byte(ip: IpAddress) {
2 let first_byte = match ip {
3 IpAddress::Ipv4(a, _, _, _) => a,
4 IpAddress::Ipv6(a, _, _, _, _, _, _, _) => a / 256 as u8,
5 };
6 println!("The first byte was: {first_byte}");
7 }

` `

23 / 75

Generics

We are repeating ourselves here, what if we could write a data structure for both of these cases?

Generics are much more powerful, but this is all we need for now

Data types become even more powerful if we introduce generics

1 struct PointFloat(f64, f64);
2 struct PointInt(i64, i64);

1 struct Point<T>(T, T);
2
3 fn main() {
4 let float_point: Point<f64> = Point(10.0, 10.0);
5 let int_point: Point<i64> = Point(10, 10);
6 }

24 / 75

Option

Rust does not have null, but you can still de�ne variables that optionally do not have a value

For this you can use the Option<T> enum

A quick look into the basic enums available in the standard library

` `

1 enum Option<T> {
2 Some(T),
3 None,
4 }
5
6 fn main() {
7 let some_int = Option::Some(42);
8 let no_string: Option<String> = Option::None;
9 }

25 / 75

Option

Rust does not have null, but you can still de�ne variables that optionally do not have a value

For this you can use the Option<T> enum

Some and None are in scope by default.

A quick look into the basic enums available in the standard library

` `

1 enum Option<T> {
2 Some(T),
3 None,
4 }
5
6 fn main() {
7 let some_int = Some(42);
8 let no_string: Option<String> = None;
9 }

` ` ` `

26 / 75

Error handling
What would we do when there is an error?

1 fn divide(x: i64, y: i64) -> i64 {
2 if y == 0 {
3 // what to do now?
4 } else {
5 x / y
6 }
7 }

27 / 75

Error handling

A panic is the most basic way to handle errors; and

is an all or nothing kind of error

immediately stops running the current thread using one of two methods:

Unwinding: going up through the stack and making sure that each value is cleaned up

Aborting: ignore everything and immediately exit the thread/program

should only be used if normal error handling would also exit the program

should be avoided in library code

What would we do when there is an error?

1 fn divide(x: i64, y: i64) -> i64 {
2 if y == 0 {
3 panic!("Cannot divide by zero");
4 } else {
5 x / y
6 }
7 }

28 / 75

Error handling
What would we do when there is an error? We could try and use the option enum instead of panicking

1 fn divide(x: i64, y: i64) -> Option<i64> {
2 if y == 0 {
3 None
4 } else {
5 Some(x / y)
6 }
7 }

29 / 75

Result
Another really powerful enum is the result, which is even more useful if we think about error handling

1 enum Result<T, E> {
2 Ok(T),
3 Err(E),
4 }
5
6 enum DivideError {
7 DivisionByZero,
8 CannotDivideOne,
9 }
10
11 fn divide(x: i64, y: i64) -> Result<i64, DivideError> {
12 if x == 1 {
13 Err(DivideError::CannotDivideOne)
14 } else if y == 0 {
15 Err(DivideError::DivisionByZero)
16 } else {
17 Ok(x / y)
18 }
19 }

30 / 75

Handling results

The divide function’s signature is explicit in how it can fail

The function’s caller can decide what to do, even if it is panicking

Note: just as with Option : Ok and Err are available globally

The caller may decide how to handle a possible error.

1 fn div_zero_fails() {
2 match divide(10, 0) {
3 Ok(div) => println!("{div}"),
4 Err(e) => panic!("Could not divide by zero"),
5 }
6 }

` `

` ` ` ` ` `

31 / 75

Handling results

unwrap checks for the "happy path", or it panics with an error message

Having unwraps all over the place is considered a bad practice

Sometimes you can ensure that an error won’t occur, in such cases unwrap can be a good solution

Sometimes, you want to postpone writing error handling code later. For both Option and Result :` ` ` `

1 fn div_zero_fails() {
2 let div = divide(10, 0).unwrap();
3 println!("{div}");
4 }

` `

` `

32 / 75

Handling results

Besides unwrap, there are some other useful utility functions:

unwrap_or(val) : Recovers with a speci�ed val

unwrap_or_default() : Recovers with a default value for the type

expect(msg) : Same as unwrap, but instead panic with a custom error message

unwrap_or_else(fn) : Recovers lazily with the result of a speci�ed function

Sometimes, you want to postpone writing error handling code later. For both Option and Result :` ` ` `

1 fn div_zero_fails() {
2 let div = divide(10, 0).unwrap_or(-1);
3 println!("{div}");
4 }

` ` ` `

` `

` `

` `

33 / 75

Result and the ? operator

Look how this function changes if we use the ? operator

` `
Results are so common, they have a special operator: the ? operator` `

1 fn can_fail() -> Result<i64, Error> {
2 let intermediate_result = match divide(10, 0) {
3 Ok(ir) => ir,
4 Err(e) => return Err(e);
5 };
6
7 match divide(intermediate_result, 0) {
8 Ok(sec) => Ok(sec * 2),
9 Err(e) => Err(e),
10 }
11 }

` `

1 fn can_fail() -> Result<i64, Error> {
2 let intermediate_result = divide(10, 0)?;
3 Ok(divide(intermediate_result, 0)? * 2)
4 }

34 / 75

Result and the ? operator

The ? operator does an implicit match, if there is an error, that error is then immediately returned and the

function returns early

If the result is Ok() then the value is extracted and we can continue right away

` `
1 fn can_fail() -> Result<i64, Error> {
2 let intermediate_result = divide(10, 0)?;
3 Ok(divide(intermediate_result, 0)? * 2)
4 }

` `

` `

35 / 75

Intermission: Impl blocks

The syntax x.y() looks similar to how we accessed a �eld in a struct

We can de�ne functions on our types using impl blocks

Impl blocks can be de�ned on any type, not just structs (with some limitations)

In the past few slides we saw a syntax which wasn’t explained before:

1 fn main() {
2 let x = Some(42);
3 let unwrapped = x.unwrap();
4 println!("{unwrapped}");
5 }

` `

36 / 75

Intermission: Impl blocks

1 enum IpAddress {
2 Ipv4(u8, u8, u8, u8),
3 Ipv6(u16, u16, u16, u16, u16, u16, u16, u16),
4 }
5
6 impl IpAddress {
7 fn as_u32(&self) -> Option<u32> {
8 match self {
9 IpAddress::Ipv4(a, b, c, d) => a << 24 + b << 16 + c << 8 + d
10 _ => None,
11 }
12 }
13 }
14
15 fn main() {
16 let addr = IpAddress::Ipv4(127, 0, 0, 1);
17 println!("{:?}", addr.as_u32());
18 }

37 / 75

Intermission: Impl blocks, self and Self

The self parameter de�nes how the method can be used.

Absence of a self parameter de�nes an associated function

` `

` `

1 struct Foo(i32);
2
3 impl Foo {
4 fn consume(self) -> Self {
5 Self(self.0 + 1)
6 }
7
8 fn borrow(&self) -> &i32 {
9 &self.0
10 }
11
12 fn borrow_mut(&mut self) -> &mut i32 {
13 &mut self.0
14 }
15
16 fn new() -> Self {
17 Self(0)
18 }
19 }

38 / 75

Intermission: Impl blocks, the self parameter

Associated functions are called via Type::method()

Methods are called via instance.method()

` `

` `

1 fn main () {
2 let mut f = Foo::new();
3 println!("{}", f.borrow());
4 *f.borrow_mut() = 10;
5 let g = f.consume();
6 println!("{}", g.borrow());
7 }

39 / 75

Intermission: Impl blocks, self and Self

The self parameter is always �rst

We don’t have to specify the type of the self parameter

We can optionally prepend & or &mut

The Self type is a shorthand for the type on which the current implementation is speci�ed.

The self parameter is called the receiver.` `

` `

` `

` ` ` `

` `

1 struct Foo(i32);
2
3 impl Foo {
4 fn borrow_mut(&mut self) -> &mut i32 {
5 &mut self.0
6 }
7
8 fn new() -> Self {
9 Self(0)
10 }
11 }

40 / 75

Memory management

41 / 75

Memory management

Most of what we have seen so far is stack-based

and small in size

All these primitive types are Copy : create a copy

on the stack every time we need them somewhere

else

We don’t want to pass a copy all the time

Large data that we do not want to copy

Modifying original data

What about data structures with a variable size?

` `

Program input

Stack

Free memory

Heap

Data and text

Stack Frame: main

Stack Frame: fib(6)

Stack Frame: fib(5)

Free memory

data

data

Free memory

data

Free memory

Free memory

data

42 / 75

Memory

A computer program consists of a set of instructions

Those instructions manipulate some memory

How does a program know what memory can be used?

43 / 75

Fundamentals

Frame 1

Frame 2

Free memory

Heap

Allocated

There are two mechanisms at play here, generally known as the stack and the heap

� Stack pointer

44 / 75

Fundamentals

Frame 1

Frame 2

Frame 3

Free memory

Heap

Allocated

There are two mechanisms at play here, generally known as the stack and the heap

� Stack pointer

A stack frame is allocated for every

function call. It contains exactly enough

space for all local variables, arguments

and stores where the previous stack

frame starts.

45 / 75

Fundamentals

Frame 1

Frame 2

Free memory

Heap

Allocated

There are two mechanisms at play here, generally known as the stack and the heap

� Stack pointer

Once a function call ends we just move

back up, and everything below is

available as free memory once more.

46 / 75

Stack limitations

Size of items on stack frame must be known at compile time

If I don’t know the size of a variable up front: What size should my stack frame be?

How can I handle arbitrary user input ef�ciently?

The stack has limitations: it only grows as a result of a function call.

47 / 75

The Heap

It’s all in the name, the heap is just one big pile of memory for you to store stuff in. But what part of the heap

is in use? What part is available?

Data comes in all shapes and sizes

When a new piece of data comes in we need to �nd a place in the heap that still has a large enough chunk

of data available

When is a piece of heap memory no longer needed?

Where does it start? Where does it end?

When can we start using it?

If the lifetime of some value needs to outlive its scope, it cannot be placed on the stack. We need the heap!

48 / 75

Vec: storing more of the same

Compare this to the array we previously saw, which has a �xed size

The vector is an array that can grow

1 fn main() {
2 let arr = [1, 2];
3 println!("{:?}", arr);
4
5 let mut nums = Vec::new();
6 nums.push(1);
7 nums.push(2);
8 println!("{:?}", nums);
9 }

49 / 75

Vec
Vec is such a common type that there is an easy way to initialize it with values that looks similar to arrays

1 fn main() {
2 let mut nums = vec![1, 2];
3 nums.push(3);
4 println!("{:?}", nums);
5 }

50 / 75

Vec: memory layout

data element 0

element 1

element n

cap n+1

cap m

capacity

len ...

...

Stack

Vec<T>

Heap

How can a vector grow? Things on the stack need to be of a �xed size

51 / 75

Put it in a Box

Boxing something is the way to store a value on the heap

A Box uniquely owns that value, there is no one else that also owns that same value

Even if the type inside the box is Copy , the box itself is not, move semantics apply to a box.

ptr T

Stack

Box<T>

Heap

` `
That pointer from the stack to the heap, how do we create such a thing?

` `

` `

1 fn main() {
2 // put an integer on the heap
3 let boxed_int = Box::new(10);
4 }

52 / 75

Boxing

When something is too large to move around

We need something that is sized dynamically

For writing recursive data structures

There are several reasons to box a variable on the heap

1 struct Node {
2 data: Vec<u8>,
3 parent: Node,
4 }

53 / 75

Boxing

When something is too large to move around

We need something that is sized dynamically

For writing recursive data structures

There are several reasons to box a variable on the heap

1 struct Node {
2 data: Vec<u8>,
3 parent: Box<Node>,
4 }

54 / 75

Vectors and arrays
What if we wanted to write a sum function, we could de�ne one for arrays of a speci�c size:

1 fn sum(data: &[i64; 10]) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }

55 / 75

Vectors and arrays
Or one for just vectors:

1 fn sum(data: &Vec<i64>) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }

56 / 75

Slices

A slice is a dynamically sized view into a contiguous sequence

Contiguous: elements are layed out in memory such that they are evenly spaced

Dynamically sized: the size of the slice is not stored in the type, but is determined at runtime

View: a slice is never an owned data structure

Slices are typed as [T] , where T is the type of the elements in the slice

What if we want something to work on arrays of any size? Or what if we want to support summing up only

parts of a vector?

` ` ` `

57 / 75

Slices

1 fn sum(data: [i64]) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }
8
9 fn main() {
10 let data = vec![10, 11, 12, 13, 14];
11 println!("{}", sum(data));
12 }

1 Compiling playground v0.0.1 (/playground)
2 error[E0277]: the size for values of type `[i64]` cannot be known at compilation time
3 --> src/main.rs:1:8
4 |
5 1 | fn sum(data: [i64]) -> i64 {
6 | ^^^^ doesn't have a size known at compile-time
7 |
8 = help: the trait `Sized` is not implemented for `[i64]`
9 help: function arguments must have a statically known size, borrowed types always have a known size

58 / 75

Slices

1 fn sum(data: &[i64]) -> i64 {
2 let mut total = 0;
3 for val in data {
4 total += val;
5 }
6 total
7 }
8
9 fn main() {
10 let data = vec![10, 11, 12, 13, 14];
11 println!("{}", sum(&data));
12 }

1 Compiling playground v0.0.1 (/playground)
2 Finished dev [unoptimized + debuginfo] target(s) in 0.89s
3 Running `target/debug/playground`
4 60

59 / 75

Slices

[T] is an incomplete type: we need to know how many T there are

Types that have a known compile time size implement the Sized trait, raw slices do not implement it

Slices must always be behind a reference type, i.e. &[T] and &mut [T] (but also Box<[T]> etc)

The length of the slice is always stored together with the reference

ptr T&T

ptr T

len T

...

T

&[T]

` ` ` `

` `

` ` ` ` ` `

60 / 75

Creating slices

Using a borrow

We can borrow from arrays and vectors to create a slice of their entire contents

Using ranges

We can use ranges to create a slice from parts of a vector or array

Using a literal (for immutable slices only)

We can have memory statically available from our compiled binary

Because we cannot create slices out of thin air, they have to be located somewhere. There are three possible

ways to create slices:

61 / 75

Creating slices
Using a borrow

1 fn sum(data: &[i32]) -> i32 { /* ... */ }
2
3 fn main() {
4 let v = vec![1, 2, 3, 4, 5, 6];
5 let total = sum(&v);
6 println!("{total}");
7 }

62 / 75

Creating slices

The range start..end contains all values x with start <= x < end .

Note: you can also use ranges on their own, for example in a for loop:

Using ranges

1 fn sum(data: &[i32]) -> i32 { /* ... */ }
2
3 fn main() {
4 let v = vec![0, 1, 2, 3, 4, 5, 6];
5 let all = sum(&v[..]);
6 let except_first = sum(&v[1..]);
7 let except_last = sum(&v[..5]);
8 let except_ends = sum(&v[1..5]);
9 }

` ` ` ` ` `

1 fn main() {
2 for i in 0..10 {
3 println!("{i}");
4 }
5 }

63 / 75

Creating slices

Interestingly get_v_arr works, even though the literal looks like it would only exist temporarily

Literals actually exist during the entire lifetime of the program

&'static here is used to indicate that this slice will exist the entire lifetime of the program

From a literal

1 fn sum(data: &[i32]) -> i32 { /* ... */ }
2
3 fn get_v_arr() -> &'static [i32] {
4 &[0, 1, 2, 3, 4, 5, 6]
5 }
6
7 fn main() {
8 let all = sum(get_v_arr());
9 let v = vec![0, 1, 2, 3, 4, 5, 6];
10 let all_vec = sum(&v as &[i32]);
11 let all_vec = sum(&v);
12 }

` `

` `

64 / 75

Strings

Strings are used to represent text

In Rust they are always valid UTF-8

Their data is stored on the heap

A String is almost the same as Vec<u8> with extra checks to prevent creating invalid text

We have already seen the String type being used before, but let’s dive a little deeper` `

` `

65 / 75

Strings
Let’s take a look at some strings

1 fn main() {
2 let s = String::from("Hello world\nSee you!");
3 println!("{:?}", s.split_once(" "));
4 println!("{}", s.len());
5 println!("{:?}", s.starts_with("Hello"));
6 println!("{}", s.to_uppercase());
7 for line in s.lines() {
8 println!("{line}");
9 }
10 }

66 / 75

String literals
We have already seen string literals being used while constructing a string. The string literal is what arrays are

to vectors

1 fn main() {
2 let s1 = "Hello world";
3 let s2 = String::from("Hello world");
4 }

67 / 75

String literals

s1 is actually a slice, a string slice

We have already seen string literals being used while constructing a string. The string literal is what arrays are

to vectors

1 fn main() {
2 let s1: &'static str = "Hello world";
3 let s2: String = String::from("Hello world");
4 }

` `

68 / 75

String literals

s1 is actually a slice, a string slice

We have already seen string literals being used while constructing a string. The string literal is what arrays are

to vectors

1 fn main() {
2 let s1: &str = "Hello world";
3 let s2: String = String::from("Hello world");
4 }

` `

69 / 75

str - the string slice

Not [u8] : not every sequence of bytes is valid UTF-8

Not [char] : we could not create a slice from a string since it is stored as UTF-8 encoded bytes

We introduce a new special kind of slice: str

For string slices we do not use brackets!

It should be possible to have a reference to part of a string. But what is it?

` `

` `

` `

70 / 75

str, String, array, Vec

Static Dynamic Borrowed

[T; N] Vec<T> &[T]

- String &str

There is no static variant of str

This would only be useful if we wanted strings of an exact length

But just like we had the static slice literals, we can use &'static str literals for that instead!

` ` ` ` ` `

` ` ` `

` `

71 / 75

String or str
When do we use String and when do we use str ?` ` ` `

1 fn string_len(data: &String) -> usize {
2 data.len()
3 }

72 / 75

String or str

Prefer &str over String whenever possible

If you need to mutate a string you might try &mut str , but you cannot change a slice’s length

Use String or &mut String if you need to fully mutate the string

When do we use String and when do we use str ?` ` ` `

1 fn string_len(data: &str) -> usize {
2 data.len()
3 }

` ` ` `

` `

` ` ` `

73 / 75

Summary

Rust uses ownership and borrowing to give memory safety without a garbage collector

Rust has structs and enums to structure your data

Use panic! , Result and Option for handling errors and missing values

De�ne methods and associated functions with impl blocks

Use Vec<T> for growable array storage

Use Box<T> to put something on the heap

Use slices whenever possible instead of owned Vec<T> and String types

` ` ` ` ` `

` `

` `

` ` ` `

74 / 75

Exercises

We’ll be doing the A2 excercises, see https://101.rustiec.be, "A2 - Advanced Syntax, Ownership,

references".

Use rust101 and Rust101! as username and password.

Don’t hesitate to ask when you get stuck!

` ` ` `

https://101.rustiec.be/A2-advanced-intro/mod.html

75 / 75

Cheat sheet for A2

Borrowing

Error handling and propagation

Slices

https://101.rustiec.be

1 let mut bar = 3; let foo = &mut bar; *foo = 1;

1 enum MyError { OhNo, Almost, }
2 fn foo(..) -> Result<u32, MyError> { res?; Ok(1) }

1 let v = vec![0, 1, 2, 3, 4, 5, 6];
2 let all = sum(&v[..]);
3 let except_first = sum(&v[1..]);
4 let except_last = sum(&v[..5]);
5 let except_ends = sum(&v[1..5]);

https://101.rustiec.be/

