
1 / 55

Rust programming
Module A1: Language basics

2 / 55

In this module
An introduction to the Rust language and basic concepts

3 / 55

Learning objectives

Get acquainted with Rust and its goals

Introduction to ownership model

Learn basic syntax and operators

4 / 55

Anyone has experience with

Rust?

5 / 55

Module A1
Language basics

6 / 55

Content overview

Basic Rust syntax (quickly)

The ownership model

7 / 55

Why learn Rust?

8 / 55

How to choose a language

1. Efficiency

2. Safety

3. Elegance

4. Practical relevance

Most languages tick two of these boxes, if you are lucky you get three.

What characteristics do you want?

9 / 55

What Rust promises

1. Pedal to the metal

2. Comes with a warranty

3. Beautiful code

4. Rust is practical

10 / 55

Pedal to the metal

Compiled language, not interpreted

State-of-the-art code generation using LLVM

No garbage collector getting in the way of execution

Usable in embedded devices, operating systems and demanding websites

11 / 55

Rust comes with a warranty

Strong type system helps prevent silly bugs

Explicit errors instead of exceptions

Type system tracks lifetime of objects

No more "null pointer exception"

Programs don’t trash your system accidentally

Warranty can be voided (unsafe)

"If it compiles, it is more often correct."

` `

12 / 55

Rust code is elegant

Data types can capture many problem domains

Orthogonal, expression-oriented language

Combine declarative and imperative paradigms

Concise syntax instead of boilerplate

Toolchain that suggests improvements to your code

13 / 55

Rust is practical

Can interface with legacy C code

Supported on many platforms

Active user base maintains a healthy ecosystem

Adoption by Microsoft, Amazon, Google, …

14 / 55

Why should you learn Rust?

Learning a new language teaches you new tricks

You will also write better C/C++ code

Rust is a young, but quickly growing platform

You can help shape its future

Demand for Rust programmers will increase!

15 / 55

Basic Syntax

16 / 55

A new project

1 $ cargo new hello-world

1 $ cd hello-world
2 $ cargo run

1 Compiling hello-world v0.1.0 (/home/101-rs/Projects/hello-world)
2 Finished dev [unoptimized + debuginfo] target(s) in 0.74s
3 Running `target/debug/hello-world`
4 Hello, world!

17 / 55

Hello, world!

1 fn main() {
2 println!("Hello, world! fib(6) = {}", fib(6));
3 }
4
5 fn fib(n: u64) -> u64 {
6 if n <= 1 {
7 n
8 } else {
9 fib(n - 1) + fib(n - 2)
10 }
11 }

1 Compiling hello-world v0.1.0 (/home/101-rs/Projects/hello-world)
2 Finished dev [unoptimized + debuginfo] target(s) in 0.28s
3 Running `target/debug/hello-world`
4 Hello, world! fib(6) = 8

18 / 55

Variables

fn main() {
 let some_x = 5;
 println!("some_x = {some_x}");
 some_x = 6;
 println!("some_x = {some_x}");
}

1 Compiling hello-world v0.1.0 (/home/101-rs/Projects/hello-world)
2 error[E0384]: cannot assign twice to immutable variable `some_x`
3 --> src/main.rs:4:5
4 |
5 2 | let some_x = 5;
6 | ------
7 | |
8 | first assignment to `some_x`
9 | help: consider making this binding mutable: `mut some_x`
10 3 | println!("some_x = {some_x}");
11 4 | some_x = 6;
12 | ^^^^^^^^^^ cannot assign twice to immutable variable
13
14 For more information about this error, try `rustc --explain E0384`.
15 error: could not compile `hello-world` due to previous error

19 / 55

Variables

1 fn main() {
2 let mut some_x = 5;
3 println!("some_x = {some_x}");
4 some_x = 6;
5 println!("some_x = {some_x}");
6 }

1 Compiling hello-world v0.1.0 (/home/101-rs/Projects/hello-world)
2 Finished dev [unoptimized + debuginfo] target(s) in 0.26s
3 Running `target/debug/hello-world`
4 some_x = 5
5 some_x = 6

20 / 55

Assigning a type to a variable

Rust is strongly and strictly typed

Variables use type inference, so no need to specify a type

We can be explicit in our types (and sometimes have to be)

1 fn main() {
2 let x: i32 = 20;
3 }

21 / 55

Integers

Length Signed Unsigned

8 bits i8 u8

16 bits i16 u16

32 bits i32 u32

64 bits i64 u64

128 bits i128 u128

pointer-sized isize usize

Rust prefers explicit integer sizes

🦀 Note

Use `isize` and `usize` sparingly

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

` ` ` `

Literals

1 fn main() {
2 let x = 42; // decimal as i32
3 let y = 42u64; // decimal as u64
4 let z = 42_000; // underscore separator
5
6 let u = 0xff; // hexadecimal
7 let v = 0o77; // octal
8 let w = 0b0100_1101; // binary
9 let q = b'A'; // byte syntax (stored as u8)
10 }

22 / 55

Floating points and floating point literals

f32 : single precision (32-bit) floating point number

f64 : double precision (64-bit) floating point number

1 fn main() {
2 let x = 2.0; // f64
3 let y = 1.0f32; // f32
4 }

` `

` `

23 / 55

Numerical operations

These expressions do overflow/underflow checking in debug

In release builds these expressions are wrapping, for efficiency

You cannot mix and match types here, not even between different integer types

1 fn main() {
2 let sum = 5 + 10;
3 let difference = 10 - 3;
4 let mult = 2 * 8;
5 let div = 2.4 / 3.5;
6 let int_div = 10 / 3; // 3
7 let remainder = 20 % 3;
8 }

1 fn main() {
2 let invalid_div = 2.4 / 5; // Error!
3 let invalid_add = 20u32 + 40u64; // Error!
4 let invalid_add = 20u64 + 40; // Works! 40 is inferred as u64
5 }

24 / 55

Booleans and boolean operations

1 fn main() {
2 let a: bool = true;
3 let b = false;
4 let c = !b; // Not
5 let d = a && b; // And
6 let e = a || b; // Or
7 }

25 / 55

Comparison operators

Note: as with numerical operators, you cannot compare different integer and float types with each other

1 fn main() {
2 let x = 10;
3 let y = 20;
4 x < y; // true
5 x > y; // false
6 x <= y; // true
7 x >= y; // false
8 x == y; // false
9 x != y; // true
10 }

1 fn main() {
2 3.0 < 20; // invalid
3 30u64 > 20i32; // invalid
4 }

26 / 55

Characters

A character is a 32-bit unicode scalar value

Very much unlike C/C++ where char is 8 bits

1 fn main() {
2 let c: char = 'z';
3 let z = 'ℤ';
4 let heart_eyed_cat = '😻';
5 }

27 / 55

Strings

Rust strings are UTF-8-encoded

Unlike C/C++: Not null-terminated

Cannot be indexed like C strings

Actually many types of strings in Rust

1 // Owned, heap-allocated string *slice*
2 let s1: String = String::new("Hello, 🌍!");

28 / 55

Tuples

Group multiple values into a single compound type

Fixed size

Different types per element

Create a tuple by writing a comma-separated list of

values inside parentheses

1 fn main() {
2 let tup: (i32, f32, char) = (1, 2.0, 'a');
3 }

Tuples can be destructured to get to their individual

values

You can also access individual elements using the

period operator followed by a zero based index

1 fn main() {
2 let tup = (1, 2.0, 'Z');
3 let (a, b, c) = tup;
4 println!("({a}, {b}, {c})");
5
6 let another_tuple = (true, 42);
7 println!("{}", another_tuple.1);
8 }

29 / 55

Arrays

Also a collection of multiple values, but this time all of the same type

Always a fixed length at compile time (similar to tuples)

Use square brackets to access an individual value

Destructuring as with tuples

Rust always checks array bounds when accessing a value in an array

1 fn main() {
2 let arr: [i32; 3] = [1, 2, 3];
3 println!("{:?}", arr);
4 println!("[{}, {}, {}]", arr[0], arr[1], arr[2]);
5 let [a, b, c] = arr;
6 println!("[{a}, {b}, {c}]");
7 }

30 / 55

Control flow

1 fn main() {
2 let mut x = 0;
3 loop {
4 if x < 5 {
5 println!("x: {x}");
6 x += 1;
7 } else {
8 break;
9 }
10 }
11
12 let mut y = 5;
13 while y > 0 {
14 y -= 1;
15 println!("y: {y}");
16 }
17
18 for i in [1, 2, 3, 4, 5] {
19 println!("i: {i}");
20 }
21 }

31 / 55

Functions

The function boundary must always be explicitly annotated with types

Within the function body type inference may be used

A function that returns nothing has the return type unit (())

The function body contains a series of statements optionally ending with an expression

1 fn add(a: i32, b: i32) -> i32 {
2 a + b
3 }
4
5 fn returns_nothing() -> () {
6 println!("Nothing to report");
7 }
8
9 fn also_returns_nothing() {
10 println!("Nothing to report");
11 }

` `

32 / 55

Statements

Statements are instructions that perform some action and do not return a value

A definition of any kind (function definition etc.)

The let var = expr; statement

Almost everything else is an expression

Example statements

` `

1 fn my_fun() {
2 println!("{}", 5);
3 }

1 let x = 10;

1 let x = (let y = 10); // invalid

33 / 55

Expressions

Expressions evaluate to a resulting value

Expressions make up most of the Rust code you write

Includes all control flow such as if and while

Includes scoping braces ({ and })

An expression can be turned into a statement by adding a semicolon (;)

` ` ` `

` ` ` `

` `

1 fn main() {
2 let y = {
3 let x = 3;
4 x + 1
5 };
6 println!("{y}"); // 4
7 }

34 / 55

Expressions - control flow

Control flow expressions as a statement do not need to end with a semicolon if they return unit (())

Remember: A block/function can end with an expression, but it needs to have the correct type

Hence, the else branch is required

` `

` `

1 fn main() {
2 let y = 11;
3 // if as an expression
4 let x = if y < 10 {
5 42
6 } else {
7 24
8 };
9
10 // if as a statement
11 if x == 42 {
12 println!("Foo");
13 } else {
14 println!("Bar");
15 }
16 }

35 / 55

Scope

We just mentioned the scope braces ({ and })

Variable scopes are actually very important for how Rust works

` ` ` `

1 fn main() {
2 println!("Hello, {name}"); // invalid: name is not yet defined
3 let name = "world"; // from this point name is in scope
4 println!("Hello, {name}");
5 } // name goes out of scope

36 / 55

Scope
As soon as a scope ends, all variables for that scope can be removed from the stack

1 fn main() { // nothing in scope here
2 let i = 10; // i is now in scope
3 if i > 5 {
4 let j = 20; // j is now also in scope
5 println!("i = {i}, j = {j}");
6 } // j is no longer in scope, i still remains
7 println!("i = {}", i);
8 } // i is no longer in scope

37 / 55

Memory management

Most of what we have seen so far is stack-based

and small in size

All these primitive types are Copy : create a copy

on the stack every time we need them somewhere

else

We don’t want to pass a copy all the time

Large data that we do not want to copy

Modifying original data

What about data structures with a variable size?

` `

Program input

Stack

Free memory

Heap

Data and text

Stack Frame: main

Stack Frame: fib(6)

Stack Frame: fib(5)

Free memory

data

data

Free memory

data

Free memory

Free memory

data

38 / 55

Rust’s ownership model

39 / 55

Memory

A computer program consists of a set of instructions

Those instructions manipulate some memory

How does a program know what memory can be used?

40 / 55

Fundamentals

Frame 1

Frame 2

Free memory

Heap

Allocated

There are two mechanisms at play here, generally known as the stack and the heap

🠔 Stack pointer

41 / 55

Fundamentals

Frame 1

Frame 2

Frame 3

Free memory

Heap

Allocated

There are two mechanisms at play here, generally known as the stack and the heap

🠔 Stack pointer

A stack frame is allocated for every

function call. It contains exactly enough

space for all local variables, arguments

and stores where the previous stack

frame starts.

42 / 55

Fundamentals

Frame 1

Frame 2

Free memory

Heap

Allocated

There are two mechanisms at play here, generally known as the stack and the heap

🠔 Stack pointer

Once a function call ends we just move

back up, and everything below is

available as free memory once more.

43 / 55

Stack limitations

Size of items on stack frame must be known at compile time

If I don’t know the size of a variable up front: What size should my stack frame be?

How can I handle arbitrary user input efficiently?

The stack has limitations though, because it only grows as a result of a function call.

44 / 55

The Heap

It’s all in the name, the heap is just one big pile of memory for you to store stuff in. But what part of the heap

is in use? What part is available?

Data comes in all shapes and sizes

When a new piece of data comes in we need to find a place in the heap that still has a large enough chunk

of data available

When is a piece of heap memory no longer needed?

Where does it start? Where does it end?

When can we start using it?

If the lifetime of some data needs to outlive a certain scope, it can not be placed on the stack. We need another

construct: the heap.

45 / 55

Variable scoping (recap)

i and j are examples containing a Copy type

What if copying is too expensive?

1 fn main() { // nothing in scope here
2 let i = 10; // i is now in scope
3 if i > 5 {
4 let j = i; // j is now also in scope
5 println!("i = {}, j = {}", i, j);
6 } // j is no longer in scope, i still remains
7 println!("i = {}", i);
8 } // i is no longer in scope

` ` ` ` ` `

46 / 55

Rust’s ownership model

47 / 55

Ownership

1 let x = 5;
2 let y = x;
3 println!("{x}");

1 Compiling playground v0.0.1 (/playground)
2 Finished dev [unoptimized + debuginfo] target(s) in

4.00s
3 Running `target/debug/playground`
4 5

Copying large strings all over the place could become

expensive! String does not implement Copy .

1 // Create an owned, allocated string
2 let s1 = String::from("hello");
3 let s2 = s1;
4 println!("{s1}, world!");

` ` ` `

1 Compiling playground v0.0.1 (/playground)
2 error[E0382]: borrow of moved value: `s1`
3 --> src/main.rs:4:28
4 |
5 2 | let s1 = String::from("hello");
6 | -- move occurs because `s1` has type

`String`, which does not implement the `Copy` trait
7 3 | let s2 = s1;
8 | -- value moved here
9 4 | println!("{s1}, world!");
10 | ^^ value borrowed here after move

48 / 55

Ownership

There is always ever only one owner of a value

Once the owner goes out of scope, any associated values will be

cleaned up as well

Rust transfers ownership for non- Copy types: move semantics` `

49 / 55

Ownership: moving into a function

1 fn main() {
2 let s1 = String::from("hello");
3 let len = calculate_length(s1);
4 println!("The length of '{s1}' is {len}.");
5 }
6
7 fn calculate_length(s: String) -> usize {
8 s.len()
9 }

1 Compiling playground v0.0.1 (/playground)
2 error[E0382]: borrow of moved value: `s1`
3 --> src/main.rs:4:43
4 |
5 2 | let s1 = String::from("hello");
6 | -- move occurs because `s1` has type `String`, which does not implement the `Copy` trait
7 3 | let len = calculate_length(s1);
8 | -- value moved here
9 4 | println!("The length of '{s1}' is {len}.");
10 | ^^ value borrowed here after move

50 / 55

Ownership: moving out of a function
We can return a value to move it out of the function

1 fn main() {
2 let s1 = String::from("hello");
3 let (len, s1) = calculate_length(s1);
4 println!("The length of '{s1}' is {len}.");
5 }
6
7 fn calculate_length(s: String) -> (usize, String) {
8 (s.len(), s)
9 }

1 Compiling playground v0.0.1 (/playground)
2 Finished dev [unoptimized + debuginfo] target(s) in 5.42s
3 Running `target/debug/playground`
4 The length of 'hello' is 5.

51 / 55

Clone

Many types in Rust are Clone -able

Use can use clone to create an explicit clone (in contrast to Copy which creates an

implicit copy).

Creating a clone can be expensive and could take a long time, so be careful

Not very efficient if a clone is short-lived like in this example

` `

` `

1 fn main() {
2 let x = String::from("hellothisisaverylongstring...");
3 let len = calculate_length(x.clone());
4 println!("{x}: {len}");
5 }
6
7 fn calculate_length(arg: String) -> usize {
8 arg.len()
9 }

52 / 55

Summary

Loads of syntax

Values are owned by variables

Values may be moved to new owners or copied

Some types may be explicitly Clone d` `

53 / 55

Practicalities

Follow instructions for A1 exercises: https://101.rustiec.be

Use rust101 and Rust101! as username and password.

Help each other out!

` ` ` `

https://101.rustiec.be/

54 / 55

Cheat sheet for A1

Functions:

Loops and control flow:

Ownership:

To create a variable that can be changed later on, use the keyword mut

There is always ever only one owner of a stack value

Once the owner goes out of scope, any associated value will be cleaned up as well

Rust transfers ownership for non-copy types: move semantics

https://101.rustiec.be

1 fn add(a: i32, b: i32) -> i32 { a + b }

1 loop {}
2 for i in 2..15 { println!("{i}"); }
3 while foo < bar { foo += 3; }
4 if foo < bar { println!("hello"); } else { println!("world"); }

` `

https://101.rustiec.be/

55 / 55

END

